Effect of Deterministic Thermocouple Errors (bias) on the Solution of the Inverse Heat Conduction Problem
نویسنده
چکیده
This paper demonstrates the deterministic errors in thermocouple measurements, or bias, through numerical simulation and illustrates the impact of these erroneous measurements on inverse heat conduction problem solutions. The case of molten metal solidifying through cooling in a sand mold is considered. Artificial data for the sand surface temperature and at two different locations below the sand surface are obtained through numerical simulation. Temperature data obtained from these simulations are used as input to the inverse heat conduction problem to determine the surface heat flux as a function of time. Results for four different thermocouple diameters are presented.
منابع مشابه
Estimation of the Strength of the Time-dependent Heat Source using Temperature Distribution at a Point in a Three Layer System
In this paper, the conjugate gradient method coupled with adjoint problem is used in order to solve the inverse heat conduction problem and estimation of the strength of the time- dependent heat source using the temperature distribution at a point in a three layer system. Also, the effect of noisy data on final solution is studied. The numerical solution of the governing equations is obtained b...
متن کاملA novel computational procedure based on league championship algorithm for solving an inverse heat conduction problem
Inverse heat conduction problems, which are one of the most important groups of problems, are often ill-posed and complicated problems, and their optimization process has lots of local extrema. This paper provides a novel computational procedure based on finite differences method and league championship algorithm to solve a one-dimensional inverse heat conduction problem. At the beginning, we u...
متن کاملSolving an Inverse Heat Conduction Problem by Spline Method
In this paper, a numerical solution of an inverse non-dimensional heat conduction problem by spline method will be considered. The given heat conduction equation, the boundary condition, and the initial condition are presented in a dimensionless form. A set of temperature measurements at a single sensor location inside the heat conduction body is required. The result show that the proposed meth...
متن کاملNon-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملA modified VIM for solving an inverse heat conduction problem
In this paper, we will use a modified variational iteration method (MVIM) for solving an inverse heat conduction problem (IHCP). The approximation of the temperature and the heat flux at are considered. This method is based on the use of Lagrange multipliers for the identification of optimal values of parameters in a functional in Euclidian space. Applying this technique, a rapid convergent s...
متن کامل